A ring-segment container has been shown in Figure 7(b). For this design, the equilibrium requirement, Equation (24), relates p_{1} and p_{2}. Under shrink-fit it is assumed that the segments just barely contact each, i.e., the segments carry no hoop stress. (If the segments were in strong contact with each other then they would act like a complete ring, i.e., they would carry compressive hoop stress, and the distinction between a ring-segment container and a multi-ring container would be lost.) Thus, the same equilibrium requirement applies to the residual pressures q_{1} and q_{2}. This requirement is

$$
\begin{equation*}
\mathrm{p}=\mathrm{p}_{1} / \mathrm{k}_{2}, \quad \mathrm{q}=\mathrm{q}_{1} / \mathrm{k}_{2} \tag{54a,b}
\end{equation*}
$$

In order to determine the pressures p_{1} and q_{1} the following radial deformation equation is formulated:

$$
\begin{align*}
u_{2}\left(r_{2}\right)-u_{2}\left(r_{1}\right)+\Delta_{12}+\alpha_{2} \Delta T\left(r_{2}-r_{1}\right) & =u_{3}\left(r_{2}\right)-u_{1}\left(r_{1}\right) \tag{55}\\
& +\alpha_{3} \Delta T r_{2}-\alpha_{1} \Delta T r_{1}
\end{align*}
$$

where
$\Delta_{12}=$ the manufactured interference defined as the amount $\left(r_{2}-r_{1}\right)$ of the segments exceeds ($\mathrm{r}_{2}-\mathrm{r}_{1}$) of the cylinders
$u_{m}\left(r_{m}\right)=$ the radial deformation of component n at r_{m} due to pressure

$$
p_{n} \text { or } q_{n} \text { at } r_{n} \text { and } p_{n-1} \text { or } q_{n-1} \text { at } r_{n-1}
$$

$\alpha_{n}=$ thermal coefficient of expansion of component n
$\Delta T=$ temperature change from room temperature.
If the elasticity solutions, Equations (17a) and (22a), for the u_{n}, and Equation (54a) for p_{2} are substituted into Equation (55) and the resulting expression solved for p_{1}, then there results

$$
\begin{equation*}
p_{1}=\frac{1}{g}\left\{\frac{2 p}{k_{1}^{2}-1}+2 \frac{E_{1}}{E} \frac{k_{2} k_{3}^{2} p_{3}}{\left(k_{3}^{2}-1\right)}+\frac{E_{1} \Delta_{12}}{r_{1}}-\Delta \mathrm{TE}_{1}\left[k_{2}\left(\alpha_{3}-\alpha_{2}\right)+\left(\alpha_{2}-\alpha_{1}\right)\right]\right\} \tag{56}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{g} & =\frac{\mathrm{k}_{1}^{2}+1}{\mathrm{k}_{1}^{2}-1}+\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}\left[\frac{2\left(\mathrm{k}_{2}-1\right)}{\mathrm{k}_{2}+1}+\frac{M_{1}}{\beta_{1}}\left(f_{3}\left(\mathrm{r}_{1}\right)-\mathrm{k}_{2} f_{3}\left(\mathrm{r}_{2}\right)\right]\right. \\
& +\frac{\mathrm{E}_{1}}{\mathrm{E}_{3}}\left[\frac{\mathrm{k}_{3}^{2}+1}{\mathrm{k}_{3}^{2}-1}+\nu\right]-\nu \tag{57}
\end{align*}
$$

The E_{n} are the moduli of elasticity at temperature. The parameters M_{1} and β_{1} and the function $f_{3}(r)$ have been defined previously in reference to Equations (22a, b). The procedure for finding q_{1} is the same as that for finding p_{1} except that $p=0$ and q_{3} replaces p_{3}, i.e.,

$$
\begin{equation*}
q_{1}=\frac{1}{g}\left\{2 \frac{E_{1}}{E} \frac{k_{2} k_{3}^{2} q_{3}}{\left(k_{3}^{2}-1\right)}+\frac{E_{1} \Delta_{12}}{r_{1}}-\Delta T E_{1}\left[k_{2}\left(\alpha_{3}-\alpha_{2}\right)+\left(\alpha_{2}-\alpha_{1}\right)\right]\right\} \tag{58}
\end{equation*}
$$

A fatigue analysis of the high-strength liner is now conducted. The range in the hoop stress at the bore is:

$$
\begin{equation*}
\left(\sigma_{\theta}\right)_{r}=\frac{\left(\sigma_{\theta}\right)_{\max }-\left(\sigma_{\theta}\right)_{\min }}{2}=\frac{\mathrm{p}}{2} \frac{\left(\mathrm{k}_{1}^{2}+1\right)}{\left(\mathrm{k}_{1}^{2}-1\right)}-\frac{\left(\mathrm{p}_{1}-\mathrm{q}_{1}\right) \mathrm{k}_{1}^{2}}{\mathrm{k}_{1}^{2}-1} \tag{59}
\end{equation*}
$$

where Equation (16a) has been used. $\left(p_{1}-q_{1}\right)$ is given by Equation (58), but an expression for $\left(q_{3}-p_{3}\right)$ is needed before Equation (59) can be used to solve for p. The expression for $\left(p_{3}-q_{3}\right)$ is obtained from Equation (35) with $\left(p_{2}-q_{2}\right)$ replacing p and with $k_{3} 2_{k_{4}}^{2} \ldots k_{N}^{2}$ replacing K^{2} in Equation (34). There results

$$
\begin{equation*}
q_{n}=p_{n}-\frac{\left(p_{2}-q_{2}\right)\left(k_{n+1}^{2} k_{n+2}^{2} \ldots k_{N}^{2}-1\right)}{\left(k_{3}^{2} k_{4}^{2} \ldots k_{N}^{2}-1\right)}, n \geqq 3 \tag{60}
\end{equation*}
$$

Substituting for ($\mathrm{q}_{3}-\mathrm{p}_{3}$) from Equation (60) into (58), then substituting for ($\mathrm{p}_{1}-\mathrm{q}_{1}$) from Equation (58) into (59), equating ($\left.\sigma_{\theta}\right)_{r}$ and $\alpha_{r} \sigma_{1}$ from Definition (13a), and solving for p / σ_{1}, one obtains

$$
\begin{equation*}
\frac{p}{\sigma_{1}}=\frac{2 \alpha_{r}\left(k_{1}^{2}-1\right)^{2}(g-h)}{\left[(g-h)\left(k_{1}^{4}-1\right)-4 k_{1}^{2}\right]} \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
h=\frac{2 E_{1} k_{n}^{2}\left(k_{n}^{2(N-3)}-1\right)}{E_{3}\left(k_{n}^{2(N-2)}-1\right)} \tag{62}
\end{equation*}
$$

($k_{3}=k_{4}=\ldots=k_{n}$ for the outer cylinders as shown by Equation (48). Therefore, $k_{3}^{2} k_{4}^{2} \ldots k_{N}^{2}=k_{n}^{2(N-2)}$ in the expression for $\left.h.\right)$

It is easily shown that $(\mathrm{g}-\mathrm{h})$ is independent of N , the number of components. Therefore, p / σ_{1} given by Equation (61) is independent of N . However, p / σ_{1} is dependent upon k_{1} whereas for the multi-ring container it was not as previously shown by Equation (47). This dependence is also shown in Figure 16. From this figure it is evident that the ringsegment container cannot withstand as great a pressure as the multi-ring container if the over-all size is the same. This result is believed due to the fact that the segments do not offer any support to the liner - they are "floating" members between the liner and the third component, another ring. The effect is more pronounced as the segment size is increased. This is shown in Figure 17 where it is seen that the pressure decreases with increasing segment size.

